- North Temperate Lakes (NTL) Long Term Ecological Research (LTER)
- Continental Limnology Group
- Understanding spatial dynamics of lakes: FLAMe studies
- Greenhouse gases of streams and rivers
North Temperate Lakes Long Term Ecological Research (NTL-LTER)
NTL-LTER is a collaborative, interdisciplinary program studying the patterns and causes of long-term change in lakes and their landscape. Current NTL-LTER related activities within our group focus on unionid mussel population dynamics and responses to environmental stressors (Vince Butitta), examination of greenhouse gas dynamics in lakes and streams (Adam Rexroade and Emily Stanley), understanding spatial dynamics in NTL-LTER lakes (for more information, see below), and lots of other collaborative investigations.
Continental Limnology Group
Inland waters are hotspots for storage and transformation of nitrogen (N), phosphorus (P), and carbon (C), and despite their limited spatial extent, these ecosystems make significant contributions to regional, continental, and global cycles of these elements. However, this understanding is largely based on extrapolating site-level measurements to the larger population of unsampled sites—an estimation method that usually includes substantial uncertainty. The overarching goal for this project is to address key challenges associated with extrapolation, and understand and predict nutrient patterns for ALL continental US lakes to inform estimates of lake contributions to continental and global cycles of N, P, and C. Our approach to this ambitious goal will be first, to build a large, integrated database of all lakes in the continental US (LAGOS-US) that includes measures of in situ nutrients collected from tens of thousands of lakes, and ecological-context metrics calculated for all ~130,000 continental lakes. Second, we will use this resource to address 5 central questions:
- What are the spatial patterns of lake conditions and their ecological contexts at regional to continental scales?
- How does consideration of lake nutrients as linked biogeochemical cycles improve prediction at continental scales?
- Which variables are most responsible for the cross-scale interactions that influence lake nutrients at continental scales?
- How is uncertainty in continental-scale extrapolation of lake nutrients influenced by novelty among ecosystems and ecological context?
- How are estimates of continental lake nutrients influenced by propagating prediction uncertainties resulting from interactions, nonlinearities, and novelty?
Addressing these questions will require new tools and approaches, so our group emphasizes active collaborations among limnologists, statisticians, and computer scientists.


Understanding spatial dynamics of lakes: FLAMe studies
Maps are fundamental to our understanding of the world around us, yet for aquatic scientists, the opportunity to see spatial patterns within individual lakes and rivers is extremely limited. Their small size means these ecosystems are often poorly resolved by most remote sensing tools. And even when airborne devices can be tuned to the size of a lake or river, they quantify only a few water quality attributes on cloud-free days.
To overcome these limitations, we use automated environmental sensors to measure multiple water chemistry/quality variables across river and lake surfaces. The Fast Limnology Automated Measurement (FLAMe) platform, developed by John Crawford, Luke Loken, and colleagues (Crawford et al. 2015), was the result of a collaboration between USGS and NTL-LTER, and then improved with support from a UW2020 award. This platform allows us to see spatial patterns in aquatic systems, and ask questions about these patterns, how they change over time, and how they affect and are affected by other ecosystem processes. Luke Loken’s dissertation considered causes and consequences of spatial heterogeneity in both rivers and lakes, and Paul Schramm used the FLAMe to investigate spatial patterns of light extinction within lakes, and how and why the amount of within-lake variation differs among lakes.
We are now using the FLAMe to ask questions about rapid environmental change. Many ecosystem regime shifts involve transition in spatial patterns leading to the central question of this project: How does spatial pattern change for ecosystems near a threshold, and can spatial statistics indicate loss of resilience? This collaborative project with Mike Pace and Steve Carpenter and the Cascade Project considers the potential for spatial statistics to measure loss of resilience by studying lakes near and far from thresholds for harmful algal blooms (HABs) and David Ortiz is examining spatial patterns in algal blooms and metabolism for this project.
Please visit the FLAMe website for more information and find out where the FLAMe has been!
Greenhouse gases of streams and rivers
Streams and rivers receive, transport, and transform carbon and nitrogen as water moves from terrestrial to marine environments, and collectively, inland waters ecosystems make larger than expected contributions to global greenhouse gas emissions. These gases are derived from the surrounding environment and/or generated in situ via various respiratory pathways. We are interested in understanding patterns of methane, carbon dioxide, and nitrous oxide concentrations and fluxes within and among lakes and rivers as well as the controls and consequences of gas production, consumption, and emission.
These studies have involved a combination of both local studies- such as work by grad students John Crawford (Ph.D. 2014), Luke Loken (Ph.D. 2018), Sam Blackburn (M.S. 2019) and Adam Rexroade (M.S. in progress)- and collaborations with lab alumni Nora Casson, Luke Loken, Sam Oliver as well as colleagues in the U.S., China, and Sweden including Liwei Zhang, Gerard Rocher Ros, and Ryan Sponseller– among many others.